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Network imaging biomarkers: insights and clinical 
applications in Parkinson’s disease
Katharina A Schindlbeck, David Eidelberg

Parkinson’s disease presents several practical challenges: it can be difficult to distinguish from atypical parkinsonian 
syndromes, clinical ratings can be insensitive as markers of disease progression, and its non-motor manifestations are 
not readily assessed in animal models. These challenges, along with others, are beginning to be addressed by innovative 
imaging methods to characterise Parkinson’s disease-specific functional networks across the whole brain and measure 
their expression in each patient. These signatures can help improve differential diagnosis, guide selection of patients for 
clinical trials, and quantify treatment responses and placebo effects in individual patients. The primary Parkinson’s 
disease-related metabolic pattern has been replicated in multiple patient populations and used as an outcome measure 
in clinical trials. It can also be used as a predictor of near-term phenoconversion in prodromal syndromes, such as rapid 
eye movement sleep behaviour disorder. Functional network imaging holds great promise for future clinical use in the 
management of neurodegenerative disorders.

Introduction
Parkinson’s disease is typically described in focal terms: 
it is caused by the loss of dopaminergic neurons in the 
substantia nigra and diagnosed clinically on the basis of 
the resulting motor triad of resting tremor, bradykinesia, 
and rigidity. Yet Parkinson’s disease is quite complex, 
manifesting in structural and functional alterations 
throughout the brain. For example, changes in cognition, 
affect, behaviour, and personality can appear early in 
Parkinson’s disease, even before motor symptoms, and 
clearly involve multiple regions and neurotransmitter 
systems beyond nigrostriatal dopamine projection.1,2

The clinical difficulties presented by Parkinson’s 
disease are many. Most notably, several other disorders 
cause similar motor signs and symptoms.3 20–25% of 
patients diagnosed as having Parkinson’s disease actually 
have atypical forms of parkinsonism (eg, progressive 
supranuclear palsy, multiple system atrophy, or cortico
basal degeneration).4 The usual approach to differential 
diagnosis is to treat the patient with levodopa and wait to 
see if they improve;  suboptimal response will prompt 
further diagnostic workup, but in some patients, the 
drug response is transient (eg, multiple system atrophy)5 
or misleading (eg, doparesponsive dystonia).6 To further 
complicate matters, Parkinson’s disease is associated 
with an unusually strong placebo effect, which makes it 
difficult to discern whether a patient is actually improving 
because of the treatment being tested.7,8 From the 
perspective of both the patient and the neurologist, then, 
Parkinson’s disease poses a more daunting challenge 
than is usually appreciated.

Modern neuroimaging in conjunction with compu
tational algorithms based on pattern recognition and 
machine learning are now beginning to address these 
challenges. Neuroimaging is particularly well suited to the 
study of neurodegenerative diseases, in which neuronal 
dysfunction spreads along discrete brain networks in a 
pattern that is highly replicable from one patient to the 
other, despite the clinical heterogeneity of disease 
manifestations.9 Various analytical approaches can be 

used to identify and visualise abnormal brain networks,10–12 
but to develop biomarkers that can measure metabolic 
network expression in individuals (and not just to 
differentiate between groups of patients), one needs 
multivariate methods, such as spatial covariance mapping, 
which provide information about interactions between 
brain regions.13 Multivariate approaches have proven 
adept at analysing functional network abnormalities in 
patients with Parkinson’s disease, Alzheimer’s disease, 
frontotemporal dementia, Huntington’s disease, 
and several parkinsonian disorders, among others 
(appendix).14–19 In this Review, we highlight advances in 
network analysis that have shed light on brain circuit 
disruptions that underlie Parkinson’s disease and have the 
potential to alter clinical practice and facilitate the 
development of new therapies.

Metabolic network patterns in Parkinson’s disease
The most well validated metabolic network pattern in 
Parkinson’s disease is known as the Parkinson’s disease
related pattern (PDRP), which is characterised by 
increased activity in the pallidothalamic and pontine 
regions and reduced activity in the premotor cortex, 
supplementary motor area, and parietal association 
regions (figure 1A).14 Given that prolonged metabolic 
derangement causes atrophy, it is not surprising that 
structural MRI shows a pattern of atrophy in patients 
with Parkinson’s disease that overlaps with the spatial 
topography of the PDRP.28

To identify the PDRP, we applied voxelwise network 
analysis to ¹⁸Ffluorodeoxyglucose (FDG) PET data from a 
combined group of 20 healthy participants and 20 patients 
with Parkinson’s disease. Establishing a diseaserelated 
covariance pattern requires extensive validation; therefore, 
only after showing excellent test–retest reproducibility in 
20 patients scanned twice over a 2month interval14 did we 
consider the possibility of using PDRP as an objective 
biomarker of disease progression. Since the initial 
characterisation, we and other groups14,20–26 have shown 
that PDRP expression is consistently elevated in patients 
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with Parkinson’s disease (figure 1B) regardless of 
medication state or scanner parameters. In fact, PDRP 
expression increases with disease severity and begins to 
rise in atrisk individuals (eg, those with rapid eye 
movement sleep behavior disorder [RBD]).29,30 Patients 
scanned while treated with levodopa (or with deep brain 
stimulation [DBS] or gene therapy) show PDRP levels that 
are suppressed relative to their OFFstate but still 
significantly elevated relative to healthy controls, indicating 
that symptomatic treatment does not completely correct 
the underlying network abnormality.24,26,27

PDRP expression values consistently correlate with 
independent motor ratings for bradykinesia and rigidity.14 
Tremor is reflected in a different metabolic network, the 
socalled Parkinson’s diseaserelated tremor pattern. 
PDRP correlates strongly with intraoperatively recorded 
subthalamic nucleus activity31 and, to a lesser degree, 
with reduced nigrostriatal dopaminergic input.22,24

At present, PDRP is one of only a few functional 
network imaging biomarkers for neurological disease in 

general, and the only one for Parkinson’s disease 
specifically, that has been validated in multiple patient 
populations14 who were studied on different scanners at 
different imaging centres (table).13

Abnormal network architecture
Newer mathematical tools allow analysis of the 
organisational structure of disease networks and show that 
even in the early stages of Parkinson’s disease, alterations 
in brain connectivity are widespread, particularly in the 
frontolateral cortex and cerebellum.12 Our group used 
graph theory16,46 (panel) to delineate the functional 
architecture of PDRP in finer detail.10 We found that the 
Parkinson’s disease network (or PDRP space) in patients 
with the disease differs from that of healthy controls, in 
that its core consists of a greater number of dense, 
bidirectional connections between metabolically active 
nodes in the putamen, globus pallidus, and thalamus, 
whereas the periphery contains metabolically less active 
cortical regions with weak nodetonode interactions 
(appendix). The Parkinson’s disease network also contains 
a separate module defined by interconnected, metabolically 
active nodes involving the cerebellum, pons, frontal cortex, 
and limbic regions.

This increased clustering and reduced average path 
length between key nodes (panel) is known as small
worldness, which is common in many biological systems 
that need to process information efficiently at minimal 
energetic cost.47 For example, the PDRP space in healthy 
controls exhibits some smallworldness because these 
brain regions have high informationprocessing demands 
in the normal resting state.10 Parkinson’s disease, however, 
produces an exaggerated smallworldness that is 
associated with high metabolic costs and inefficient, 
noisy infor mation transfer between network regions10 
(Alzheimer’s disease, in contrast, involves a loss of small
worldness between network nodes).48 The Parkinson’s 
disease network’s hyperconnectivity is centred in two 
discrete subnetworks consisting of three nodes each: the 
putamen, globus pallidus, and thalamus on the one hand, 
and the pons, cerebellum, and frontal cortex on the other 
(figure 2). Each of these subnetworks has been associated 
with spontaneous oscillatory activity, which likely 
mediates specific clinical features: bradykinesiarigidity 
through the basal ganglia subnetwork and tremor 
through the brainstem and cerebellum subnetwork.10 The 
existence of a tremor subnetwork dovetails neatly with 
repeated obser vations that tremor arises from dysfunction 
in regions different from those producing other motor 
symptoms.49–52

The graph theory analysis also sheds light on the 
beneficial effects of levodopa. The drug partially normalises 
the average path length between network nodes to improve 
information transfer within the PDRP space, but does not 
correct the exaggerated smallworldness in patients with 
Parkinson’s disease.10 Whether these changes are more 
responsive to DBS than levodopa is not known.

Panel: Definitions of mathematical concepts

Network
In mathematics, a set of nodes (the basic network element, 
usually represented as points or dots) that are connected by 
edges (lines). Many neural systems can be modelled as 
networks. Subsets of nodes with high connectivity form 
modules (subnetworks).

Graph theory
Mathematical approach to studying properties of networks. 
An array of graph theory metrics captures different 
topological features of the network.

Average path length (in graph theory)
The approximate number of edges that must be traversed to 
connect two nodes; reflects the ease with which information 
can be shared between regions in the network.

Clustering coefficient (in graph theory)
The fraction of a given node’s neighbours that are also 
neighbours of each other; reflects the tendency of nodes to 
associate with nearby nodes for purposes of 
subspecialisation.

Small-worldness (in graph theory)
The ratio of the clustering coefficient to the average path 
length in comparison with that of a random network. Small-
worldness balances segregation (local subspecialisation) and 
integration within a network while minimising energetic costs.

Spatial covariance analysis
An analytical method based on principal component analysis, 
designed to reduce the complexity of multivariate data. 
Identifies the principal components (covariance patterns) 
that explain the largest statistical effects (variances) in 
multisubject-multiregional datasets.
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Cognitive dysfunction and other non-motor symptoms 
of Parkinson’s disease
Cognitive dysfunction and affective or behavioural 
changes can appear early in Parkinson’s disease but tend 
to progress more slowly than the motor symptoms.53 With 
time, however, most patients will develop multidomain 
mild cognitive impairment or dementia.53 Why cognitive 
deficits in Parkinson’s disease evolve into dementia is not 
entirely clear, but the dual syndrome hypothesis posits 
that this evolution marks the transition from early 
executive dysfunction due to frontostriatal dopaminergic 
loss to a later posterior cortical syndrome due to 
cholinergic loss.54 One of the difficulties in unravelling the 
biology of cognitive dysfunction in Parkinson’s disease is 
that the neuropathology—including Lewy bodies, 
neurofibrillary tangles, and microvascular disease—does 
not correspond well to nonmotor symptoms. Numerous 
genetic and cellular factors also make the pathology 
difficult to unravel by traditional molecular techniques.55–59 
In this context, network approaches have proven 
particularly useful.60

Spatial covariance analysis has revealed a distinct 
metabolic network underlying cognitive loss. The 
Parkinson’s diseaserelated cognitive pattern (PDCP) is 

characterised by prominent metabolic reductions in medial 
frontal and parietal activity. Originally identified in a small 
cohort of 15 nondemented patients with Parkinson’s 
disease, PDCP expression has since been found to rise 
along with increasing degrees of cognitive dysfunction, 
reaching the highest levels in those with Parkinson’s 
disease  dementia and dementia with Lewy bodies 
(figure 3).24,40,41,62 PDCP expression consistently correlates 
with neuropsychological indices of executive dysfunction 
and deficits in verbal learning, memory, visuospatial ability, 
and perceptual motor speed, but not motor disability.14,63,41 
In line with the dual syndrome hypothesis, the PDCP 
topography involves dopaminergic and cholinergic 
afferents to the cerebral cortex: dysfunction of 
dopaminergic projections to the medial frontal cortex 
(represented by the anterior hypometabolic hubs of the 
PDCP) emerges before loss of cholinergic input to the 
temporal and parietal cortex (represented by the posterior 
hypometabolic hubs of the network).22,41,42 Note that PDCP 
levels in patients with dementia with Lewy bodies and in 
patients with Parkinson’s disease dementia are elevated 
to a similar degree.24,64 Given the relative sparing of 
medial temporal metabolic changes in these disorders 
compared with Alzheimer’s disease, it is not surprising 

Figure 1: Discovery and validation of the Parkinson’s disease-related pattern
(A) The Parkinson’s disease-related pattern (PDRP) displayed as voxel weights (ie, regional loadings) thresholded at Z=3·1 (p<0·001), and overlaid on T1-weighted MRI template. (B) Data are Z scored 
with respect to healthy control values; means (SE) are presented to the right of the individual data. PDRP expression was increased in patients with Parkinson’s disease (closed circles) relative to healthy 
controls (open circles) in the North Shore University Hospital derivation cohort (p<2 × 10–7),14 and it was consistently elevated across six independent testing samples when scanned in a medication-free 
(OFF) state.20–25 Significant PDRP elevations were also observed in Parkinson’s disease cohorts who were scanned in a medicated (ON) state (USA,26,27 South Korea)24 and in two cohorts of newly diagnosed 
patients who had not yet begun drug therapy (denoted by *: USA, courtesy of Chris C Tang, The Feinstein Institute for Medical Research, Manhasset, NY, USA; Italy, courtesy of Flavio M Nobili, University 
of Genoa, Genoa, Italy). These results show that the underlying pathogenic changes are quantifiable regardless of the patients’ disease stage or treatment state. Slight differences in mean PDRP 
expression scores across the different cohorts are due to group differences in disease duration and severity. 
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that the PDCP is topographically distinct from the 
independently characterised Alzheimer’s diseaserelated 
metabolic brain pattern.40,65

Graph theory approaches have also been used in 
conjunction with restingstate functional MRI (rsfMRI) 
to delineate network abnormalities underlying cognitive 
decline in Parkinson’s disease. Patients with mild 
cognitive impairment have attenuated longrange 
connections but increased local connectivity (clustering 
and smallworldness) in the cognitive network, which 
parallels our observations with the motorassociated 
networks.66 Combining graph theory analysis with 
rsfMRI, dopaminergic imaging, and neuropsychological 
testing showed that executive dysfunction is associated 
with increased frontostriatal connectivity and 
disinhibition of subcortical processing, both of which are 

linked to nigrostriatal loss.67 Drawing an analogy with 
Mink’s hypothesis that the basal ganglia enable initiation 
and termination of motor activity,68 it has been proposed67 
that nigrostriatal dopamine facilitates transitions 
between inhibition and facilitation of frontosubcortical 
circuits.

Network imaging also helps explain why dopaminergic 
treatment is often associated with behavioural sideeffects, 
such as impulse control disorders.69,70 Affecting up to 20% 
of patients with Parkinson’s disease who are taking 
dopamine agonists, impulse control disorders have been 
linked to functional abnormalities in the reward network 
of frontal and mesolimbic circuits, such that the patient 
has difficulty inhibiting a dysfunctional behaviour even 
when they anticipate a negative outcome.71 Tessitore and 
colleagues72 followed 85 patients with Parkinson’s disease 

Salient regional changes in 
functional activity*

Current level of validation by 
modality†

Research or clinical applications Remaining needs or questions

Biomarkers for differential diagnosis and staging

Parkinson’s disease-related 
pattern14,21,24,25,29,30,32,33

Increase in the globus pallidus, 
putamen, thalamus, pons, 
cerebellum, and sensorimotor cortex; 
decrease in the lateral premotor 
cortex parieto-occipital association 
regions

FDG PET: generalisation; ASL, 
SPECT: development; rs-fMRI: 
prospective validation

Measure disease progression; assess 
therapy outcome; identify patients 
for clinical studies before 
randomisation; explore effects of 
new therapies

Large-scale validation at population 
level; measure rate of progression in 
prodromal states and develop 
algorithms to accurately predict 
time of phenoconversion

Progressive supranuclear palsy-related 
pattern (PSPRP); multiple system 
atrophy-related pattern (MSARP); 
corticobasal degeneration-related 
pattern (CBDRP)23,24,34–39

PSPRP: decrease in the upper 
brainstem, medial frontal cortex, and 
medial thalamus; MSARP: decrease in 
the putamen and cerebellum; CBDRP: 
decrease in the asymmetric frontal 
and parietal lobes, caudate, and basal 
ganglia

FDG PET: prospective validation Classify individual patients with 
parkinsonism and uncertain clinical 
diagnosis (eg, before invasive 
therapy), differentiate Parkinson’s 
disease from progressive 
supranuclear palsy, multiple-system 
atrophy, and corticobasal ganglionic 
degeneration; classify individual 
patients or trial participants before 
randomisation; track network 
progression in natural history studies

Additional cross-sectional validation 
in large independent samples; 
validate network progression 
through longitudinal studies

Network markers for cognitive assessment

Parkinson’s disease-related cognitive 
pattern24,33,40–42

Increase in the pre-supplementary 
motor area, precuneus, posterior 
parietal, prefrontal regions; decrease 
in the cerebellum and dentate 
nucleus

FDG PET: prospective 
validation; rs-fMRI:
development, standardisation 
across scanners and protocols

Assess rates of cognitive decline at 
the systems level; assess treatment 
response at the network level; 
explore effects of new therapies

Additional longitudinal studies to 
confirm rates of network 
progression

Intervention-related assessment

Parkinson’s disease-related tremor 
pattern14

Increase in the anterior cerebellum, 
dentate nucleus, dorsal pons, primary 
sensorimotor cortex, and caudate or 
putamen

FDG PET: development Assess treatment response at the 
network level; assess the effects of 
novel interventions on tremor

Validation across multiple scanners 
or laboratories; compare network 
topographies in Parkinson’s disease 
tremor vs essential tremor

Sham surgery-related pattern43 Increase in the cingulate gyrus and 
cortex, inferior temporal cortex, 
hippocampus, amygdala, and 
cerebellar vermis

FDG PET: development Assess brain network response to 
placebo or sham surgery; identify 
patients predisposed to developing 
placebo responses prior to their 
participation in clinical trials

Test whether specific to motor 
effects and sham surgery, or 
generalisable to cognitive responses 
and placebo drugs 

DBS functional connectivity profile44,45 Increase in the supplementary motor 
area, anterior cingulate, and medial 
prefrontal cortex; decrease in the 
primary motor cortex

PET and rs-fMRI: development Predict clinical outcome of DBS in 
individual patients with Parkinson’s 
disease; assess non-motor DBS 
responses in individual patients

Prospective validation; assess 
contribution of anatomical 
connectivity to outcome prediction

Network biomarkers can be applied prospectively to new patients and datasets to generate predictions about clinical status, symptoms, and future outcomes. DBS=deep brain stimulation. 
FDG=¹⁸F-fluorodeoxyglucose. ASL=arterial spin labelling. rs-fMRI=resting-state functional MRI. *Brain regions that drive each metabolic network are indicated or, in the case of DBS, the changes in connectivity 
that correlate with outcome. †We follow Woo et al13 in classifying the stages of validation these various biomarkers have achieved—development, prospective validation (replication in a new sample), 
generalisation (replication across multiple scanners and laboratories), or population-level (large-scale, diverse population). 

Table: Applications of functional network patterns in patients with parkinsonism to define clinical status and predict future outcomes
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for 36 months after they began dopaminergic therapy and 
found that those (15 [17%]) who developed impulse control 
disorders showed hyperconnectivity in the salience 
network and reduced connectivity in the central executive 
and default mode networks (DMN), which could have 
increased their susceptibility to dopaminergic sideeffects. 
Further studies with larger sample sizes, studying cohorts 
across time, or measuring network activity while engaging 
patients in cognitive tasks, should provide more insight 
into cognitive dysfunction in Parkinson’s disease.

Importantly, although the metabolic network patterns 
correlate with certain clinical measures, PDRP and PDCP 
do not reflect symptoms: rather, they reflect the 
underlying pathology that gives rise to symptoms. The 
unbiased, datadriven approach employed for metabolic 
network pattern discovery61,73 identifies the patterns with 
the greatest effect size, corresponding to the major 
sources of variability in the data. These topographies are 
generally linked to the dominant clinical manifestations 
of a given disorder, which in the case of Parkinson’s 
disease are motor disability and cognitive dysfunction. 
Therefore, although PDRP and PDCP expression values 
in individual patients show reproducible correlations 
with motor ratings and specific cognitive tests, these 
patterns also reflect other clinical features not measured 
by the Unified Parkinson’s Disease Rating Scale (UPDRS) 
or neuropsychological testing. Abnormal elevations in 
PDRP expression are detectable even before motor 
symptoms appear.29,30 Measures of network progression 
and clinical disability thus serve as complementary, non
redundant descriptors of the underlying disease process. 
Other nonmotor symptoms of Parkinson’s disease, 
such as pain, depression, and apathy, are likely to be 
represented by smaller effects in the data, and extracting 
valid network descriptors of these symptoms will probably 
require large patient samples.

Network analysis in the clinical setting
Early detection and prediction of symptom onset
There is considerable interest in identifying markers for 
prodromal disease stages, which would allow novel 
diseasemodifying therapies to be started earlier.74 Given 
that roughly 50% of individuals with RBD phenoconvert 
to Parkinson’s disease within 5 years,75 we used network 
quantification to assess the likelihood of 
phenoconversion in atrisk individuals.76 PDRP 
expression levels have been measured in four 
independent, crosssectional cohorts with RBD. In each 
group, PDRP expression was significantly elevated 
relative to corresponding agematched healthy 
controls.29,30,32 On average, the various RBD groups 
showed levels of PDRP expression that were 
intermediate between values for healthy controls and 
patients with earlystage Parkinson’s disease with 
unilateral symptoms (hemiParkinson’s disease).29,30 
Longterm clinical followup data29 suggest that the 
patients with RBD most likely to phenoconvert to 

Parkinson’s disease or dementia with Lewy bodies 
already have networklevel functional abnormalities at 
baseline. Unexpectedly, the same study29 found that 
abnormally low PDRP values with negative subject 

Figure 2: Abnormal network-level clustering in Parkinson’s disease
Graph theory can identify regions within the network space in which clustering 
(defined by the number of triangles or closed triples formed when a node’s 
nearest neighbours are connected) is increased in one group of patients relative 
to another.10  The radius of each node is proportional to its influence on the 
network—ie, its centrality. For each network node, corresponding PDRP region 
weights were colour-coded such that metabolically active regions (PDRP weights 
≥1·0) are depicted in red while relatively underactive regions (PDRP weights 
≤−1·0) are depicted in blue. (A) In a group of healthy controls, three discrete sets 
of interconnected nodes (open triples) were seen in (1) the putamen, globus 
pallidus, and the thalamus; (2) the pons, cerebellar vermis, and frontal cortex; and 
(3) superior and middle frontal gyri, and inferior parietal lobule. (B) In the 
Parkinson’s disease group (age-matched to the healthy controls), additional 
interactions (ie, edges) were detected, sealing off each of the triples as a discrete 
triangle (green lines). These edges denote specific node-to-node functional 
interactions present in patients with Parkinson’s disease, but not in healthy 
controls. Notably, the closed triples (triangles) in areas (1) and (2) were located 
within the core zones identified in the structural analysis of the Parkinson’s 
disease network.10  These triples were formed by abnormal functional connections 
linking the nearest neighbours of core nodes through bidirectional, mutually 
facilitating interactions (red arrows). Adapted from Ko, et al.10  by permission of 
Oxford University Press. IPL=inferior parietal lobule. MFG=middle frontal gyrus. 
PDRP=Parkinson’s disease-related pattern. SFG=superior frontal gyrus.
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scores herald conversion instead to multiple system 
atrophy, another synucleinopathy associated with RBD.

Separate RDBrelated metabolic patterns (RBDRPs) 
have been described in two groups of patients with RBD 
and healthy controls.30,77 Although RBDRP expression 
levels were elevated in patients with RBD, they did not 
differ between groups of patients with Parkinson’s 
disease with RBD and those without it. This result 
suggests that the RBDRP topography is associated more 
with evolving synucleinopathy than with RBD per se.77 
The topographic similarity of RBDRP with PDRP, 
and the highly correlated expression levels observed for 
the two patterns, underscores the close relationship 

between RBD and the underlying metabolic pathology of 
Parkinson’s disease. Longitudinal data are being analysed 
to assess the rate of network progression in patients with 
RBD phenoconverting to Lewybody disorders.

Though network biomarkers have not yet been clinically 
validated for diagnosing prodromal conditions, their 
potential benefits are underscored by the difficulty of 
assessing prodromal Parkinson’s disease by ordinary 
clinical means.78 The criteria include risk based on age, 
nonmotor factors (eg, RBD, olfactory dysfunction, daytime 
somnolence, and constipation), and clinical factors 
(eg, dopamine transporter imaging).78 This approach has 
been validated in a prospective cohort study79 on 
121 individuals with RBD. In the study, the prodromal 
criteria had about 81% sensitivity and 68% specificity for 
conversion at 4 year followup. A network biomarker, alone 
or in combination with these variables, would provide 
earlier notice of phenoconversion, with less uncertainty.

Disease progression
Longitudinal studies14,43 of earlystage and more advanced 
Parkinson’s disease, performed in the OFFstate to avoid 
confounding treatment effects, have shown that PDRP 
expression increases continuously over time. The rate of 
PDRP progression is similar for different cohorts, 
consistent with an overall linear process (figure 3).14,43 
PDCP expression increases over time as well, but it lags 
behind PDRP throughout the course of disease.40 
Interestingly, metabolic expression of the DMN remains 
at normal levels until roughly the time that cognitive 
dysfunction becomes evident, along with concomitant 
increases in PDCP expression (figure 3).61

The fact that PDRP expression consistently rises before 
PDCP in patients with Parkinson’s disease indicates that 
the disease process affects neural activity in the PDRP 
space before the PDCP space.14 What is not clear, however, 
is whether PDCP progresses more slowly than PDRP, or 
whether PDCP simply gets a later start and the two 
networks progress at a similar rate. From a practical 
perspective, however, what is important is that both 
networks can be quantified in individual patients to 
monitor disease progression and treatment responses.40

Differential diagnosis
A metaanalysis80 found that both observerdependent 
and observerindependent methods using metabolic 
imaging were very accurate (>90%) in distinguishing 
Parkinson’s disease from atypical parkinsonian 
syndromes—as long as the observers were highly 
experienced. Observerindependent approaches that rely 
entirely upon automated imagebased classification are 
most useful when such expertise is scarce.13 Given that 
the clinical diagnosis of Parkinson’s disease is inaccurate 
in as many as 20–25% of cases,4 the need for observer
independent approaches is clear.

Neuroimaging methods incorporating network 
algorithms offer the most promise for improving 

Figure 3: Longitudinal changes in network activity in patients with Parkinson’s disease
Network expression values were measured on the Z scale for three groups of participants: healthy controls 
(HC, n=33), patients with advanced disease and cognitive impairment (PD MCI, n=15), and a group (n=15) of early-
stage patients scanned at baseline, then 2 years and 4 years later (PD0, PD2, PD4). The mean duration of disease in 
this group was 2, 4, and 6 years at these three scanning timepoints.61 Representative brain slices for each of the 
networks were overlaid on the corresponding T1-weighted MRI template. The  y-axes denote network expression as 
labelled in each panel; note that in panel D the axis to the left marks PDRP or PDCP expression, whereas the axis on 
the right marks DMN expression. Error bars depict SE. (A, B) PDRP and PDCP expression increased over time in the 
longitudinal cohort (PD0, 2, 4), without concurrent changes in DMN expression. (C) DMN expression was reduced 
in the PD MCI group. Adapted from Spetsieris, et al.61 (D) Estimated time course for changes in PDRP, PDCP, and the 
metabolic DMN in patients with Parkinson’s disease with increasing symptom duration and severity (PD0, 2, 4, PD 
MCI) compared with age-matched HCs. PDRP and PDCP expression increased over time in patients with Parkinson’s 
disease (main effect of time: PDRP, p<0·0005; PDCP, p<0·001; one-way repeated measures ANOVA). PDRP and 
PDCP showed different time courses in patients with early-stage Parkinson’s disease (PD0, 2, 4), with PDCP 
increasing at a slower rate than PDRP (p<0·04). Reductions in expression of the DMN were not significant (p>0·11) 
for PD0, 2, 4, but were significant for patients with PD MCI (p<0·01). The PDCP topography contains some overlap 
with DMN, such that an increase in the former involves loss of the latter in advanced disease. DMN=default mode 
network. PDCP=Parkinson’s disease-related cognitive pattern. PDRP=Parkinson’s disease-related pattern. 
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differential diagnosis in patients with parkinsonism 
(appendix).80–82 In parkinsonian patients with uncertain 
initial clinical diagnosis (n=167; final diagnosis: 96 with 
Parkinson’s disease, 41 with multiple systems atrophy 
(MSA), and 30 with progressive supranuclear palsy 
[PSP]), accurate networkbased categorisation can be 
achieved 3–4 years before a final diagnosis is determined 
by an expert clinician masked to the imaging findings.34 
These results were replicated23 in an independent cohort 
from New Delhi, India (n=129; 81 with Parkinson’s 
disease, 20 with MSA, and 28 with PSP; final diagnosis 
after 2·2 years); the positive predictive value (PPV) for 
discriminating Parkinson’s disease from atypical 
parkinsonism was 97%, and 91% for differentiating MSA 
from PSP. Most (77 [60%]) of this cohort had short 
symptom duration (<2 years), yet both PPV and diagnostic 
specificity remained high (≥95%) when assessed in this 
group of patients. Preliminary data35 suggest that a similar 
logistical categorisation approach can be used to 
distinguish individuals with corticobasal degeneration 
from their clinically similar counterparts with PSP. Since 
postmortem neuropathology is seldom available to 
confirm diagnosis, these studies rely primarily on final 
clinical diagnosis after at least 2 years of followup by a 
movement disorders specialist, which shows a very high 
concordance with postmortem findings and 99% PPV.4 
By this measure, network analysis is even more robust in 
differentiating Parkinson’s disease from other 
parkinsonian disorders than ordinary metabolic imaging, 
which is already known for its sensitivity and specificity.80,83

Although other observerindependent classification 
algorithms for PET images have been examined, whether 
these approaches offer substantial improvement over the 
logistic discrimination method is unclear.84,85 Automated 
structural MRI analysis methods have proven able to 
discriminate among Parkinson’s disease, MSA, and PSP, 
but these studies86–88 used small or highly selected samples 
and require further validation. To establish a large open
source database would be extremely useful so that the 
various classification algorithms could be rigorously 
compared.13

Network analysis in clinical trial design
Among the many challenges that beset clinical trials, three 
can now be addressed with network analysis. The first is 
diagnostic uncertainty: some conditions are clinically 
indistinguishable from Parkinson’s disease but patholo 
gically distinct, and they could confound assessment of 
Parkinson’s disease treatments. Clearly, algorithms that 
improve differential diagnosis, such as those described 
previously, would be extremely useful in guiding selection 
of participants for clinical trials. In fact, the networkbased 
classification algorithm has already been used to screen 
participants in a phase 2 trial of subthalamic nucleus gene 
therapy for advanced Parkinson’s disease36,89 and to assess 
patients referred for more routine antiparkinsonian 
interventions, such as subthalamic nucleus DBS (figure 4).37

A second challenge is being able to measure treatment 
responses with enough sensitivity and reliability to show 
changes over the course of the trial. Clinical indices 
(UPDRS motor ratings) are the primary outcome 
measures, but the placebo response is curiously strong in 
Parkinson’s disease, so motor improvement alone 
(especially over a period of mere months) is an unreliable 
indicator of treatment efficacy. PDRP, however, is 
suppressed by clinically effective levodopa treatment in 
patients with Parkinson’s disease27 and in macaques 
receiving putaminal implants of retinal pigment epithelial 
cells that produce levodopa;90 PDRP expression is also 
reduced by both highfrequency DBS and therapeutic 
ablation of the subthalamic nucleus.14 In each of these 
interventions, motor outcome correlated with the degree 
of therapeutic PDRP modulation that was observed (even 
though PDRP remains elevated relative to controls). 
PDRP can thus be useful as an objective secondary 
descriptor of the treatment effect.

The importance of objective measures becomes clearer 
when we consider that patients with Parkinson’s disease 
have a tendency to develop strong placebo responses, which 
pose a third major challenge for clinical trials. The mean 
placebo response can be as high as 59%, and in one review 
of 11 randomised placebocontrolled trials, 16% of patients 
with Parkinson’s disease randomly assigned to be given 
placebo showed an improvement in UPDRS motor ratings 
of more than 50%, which persisted in the masked conditions 
of the trial for up to 35 weeks.7,89 A study91 turned up yet 
another placeborelated problem for clinical trials: previous 
drug therapy actually increases the bradykinetic placebo 
response in Parkinson’s disease. Thus, clinical trials in 
which participants with Parkinson’s disease have taken 
antiparkinsonian drugs will involve greater placebo 
responses than those with drugnaive participants. The 
placebo effect is probably responsible for so many 
treatments failing to show efficacy, but the discovery of a 
specific network underlying the placebo response now 
opens up the possibility of eliminating participants likely to 
respond to placebo from clinical trials.

A distinct network for placebo responses
In the process of studying treatment effects, we identified 
and validated a novel metabolic brain network associated 
with the placebo response in patients with Parkinson’s 
disease who had participated in a doubleblind sham 
surgerycontrolled clinical trial.43 The metabolic 
topography of the sham surgeryrelated pattern (SSRP) 
involves anatomical–functional pathways linking the 
posterior cerebellar vermis to the limbic cortex via the 
ventral anterior thalamus, amygdala, and caudate 
nucleus (appendix).43 Baseline SSRP expression, 
measured before randomisation, correlates with the 
motor sham response that was subsequently observed 
under masked trial conditions (appendix). The network 
changes after sham treatment do not appear with 
experimental subthalamic nucleus gene therapy or 
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levodopa treatment, and they are reversed by unmasking. 
These results strongly suggest that a restingstate 
metabolic brain network underlies the placebo response 
in Parkinson’s disease.

Another group using fMRI also showed that the 
placebo response in Parkinson’s disease involves a 
complex network of regions beyond the striatum.92 In 
this clever study,92 an expensive placebo produces a 
stronger response than a cheap placebo in patients with 
Parkinson’s disease, deactivating the left putamen, 
sensorimotor cortices, and premotor cortex, whereas the 
cheap placebo activates the bilateral anterior and 
posterior cingulate cortices, left lateral sensorimotor 
cortex, and right parietal cortex, among other regions.

Beyond the intrinsic fascination of finding that the 
placebo response has a physiological basis, a practical 
benefit is that the expression of placeborelated 
topographies could be used in randomised phase 2 
studies to identify individuals predisposed to developing 
placebo responses under masked trial conditions. To 
assess a treatment’s efficacy in a clinical trial, the 
response to treatment must be distinguished from 
placebo responses as clearly as possible. Simulations 

based on published data suggest that the use of baseline 
SSRP to identify and exclude such patients before 
randomisation in early proofofconcept studies could 
reduce the sample size needed for a pivotal trial by at 
least 50% (appendix).43 Once a treatment is in clinical 
use, the placebo effect should be harnessed in the clinic 
to improve treatment outcomes.93 Further research is 
needed to determine whether the SSRP network reflects 
only motor placebo effects or also underlies cognitive 
responses, whether it is activated only by sham surgery 
or also by oral placebos, and whether it is relevant to 
individuals who are healthy or who have conditions other 
than Parkinson’s disease.

Development of rs-fMRI-based disease patterns
For the most part, the Parkinson’s diseaserelated 
covariance patterns described in the previous section 
were characterised based on metabolic imaging with 
FDG PET. This technology, although generally available 
in tertiary hospital settings in Europe, North America, 
and increasingly in parts of Asia, continues to depend on 
the administration of shortlived radiotracers in the 
clinical setting, which limits the scalability of the 
metabolic network approach. Although spatial covariance 
mapping has been applied to cerebral perfusion imaging 
with the use of either singlephoton emission CT or 
arterial spin labelling MRI,14,29,94 these methods are 
somewhat less sensitive than FDG PET and might 
require larger samples for reliable pattern identification. 
The quantification of PDRP activity in perfusion scans 
has an additional limitation in that expression values can 
increase substantially in the levodopatreated condition. 
Indeed, these haemodynamic effects are especially 
pronounced in Parkinson’s disease  patients with 
levodopainduced dyskinesias.27,95 A 12h medication 
washout might be a more practical means of addressing 
this issue than an explicit correction for drugrelated 
changes in perfusion scans.

Noninvasive rsfMRI techniques offer a more 
promising approach to identifying and measuring the 
activity of diseaserelated networks.33 An rsfMRIbased 
version of PDRP (fPDRP) has been identified by use of 
independent component analysis and bootstrap 
resampling. The topography of fPDRP resembles PDRP, 
though some differences exist, most notably in the 
absence of hypometabolic regions (figure 5A). 
Nevertheless, pattern expression scores in those with 
Parkinson’s disease who have undergone both types of 
imaging are quite similar, and fPDRP expression values 
reliably discriminate patients with Parkinson’s disease 
from healthy controls in derivation and validation cohorts 
(figure 5B, C). As with the PETbased PDRP, fPDRP 
scores correlate with independent clinical ratings for 
akinesia rigidity, but not tremor, and fPDRP expression is 
reduced by levodopa treatment.33

Network analysis has also revealed a cognitionrelated 
topography in rsfMRI data from patients with 

Figure 4: Differential diagnosis in patients with parkinsonism before randomisation for a clinical trial
An automated image-based algorithm was used to screen participants for a randomised, double-blind, 
sham-controlled phase 2 study for gene therapy in advanced Parkinson’s disease (with glutamic acid 
decarboxylase, or AAV2-GAD).89 Of the 56 participants screened, 45 were confirmed to have Parkinson’s disease 
and enrolled in the study; automated network analysis of FDG PET images indicated that 11 (20%) patients did not 
actually have Parkinson’s disease. Patient 1: automated image-based classification confirmed the clinical diagnosis 
of Parkinson’s disease with a likelihood of 99·95%, revealing typical increases in metabolic activity in 
pallidothalamic areas. Patient 2: single-case statistical parametric mapping analysis revealed bilateral metabolic 
reductions in the putamen, which is not typical for Parkinson’s disease. The automated image-based classification 
yielded a 99% likelihood of non-Parkinson’s disease and a 99·77% likelihood of MSA at the second-level analysis. 
Based on these findings, patient 1 was enrolled in the study and patient 2 was excluded before randomisation. 
Metabolic increases (red) and metabolic decreases (blue) are displayed at p<0·05 (uncorrected) and overlaid 
on a structural MRI template. FDG=¹⁸F-fluorodeoxyglucose. MSA=multiple system atrophy. MSARP=MSA-related 
pattern. PDRP=Parkinson’s disease-related pattern. PSP=progressive supranuclear palsy. PSPRP=PSP-related 
pattern. UPDRS=Unified Parkinson’s Disease Rating Scale.
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Parkinson’s disease (fPDCP), which resembles its 
metabolic counterpart in being characterised by 
alterations in the parietal, frontal, and temporal cortical 
regions, as well as the cerebellum (figure 5D).33 Similar to 
PDCP, fPDCP expression values correlate with individual 
differences in executive function and verbal learning in 
nondemented patients with Parkinson’s disease.33 
Further validation in independent imaging platforms 
and optimisation of the method (standardised duration 
of the scan, uniform scanning protocols, reduction of 
motion artifacts, etc) will be necessary before fPDRP and 
fPDCP can become part of routine clinical assessment.

Conclusions and future directions
Network imaging has revealed that Parkinson’s disease 
and related neurodegenerative disorders exhibit 
characteristic alterations in functional connectivity that 
are widely distributed throughout the brain. These 
widespread changes help explain why the clinical 
manifestations of these diseases are so complex and 
difficult to treat. As much as they deepen our 
understanding of neurodegeneration, however, these 
network biomarkers also hold potential to improve the 
diagnosis and management of individual patients (table; 
appendix). In the case of Parkinson’s disease, PDRP is 
now a quantifiable network biomarker that, in 
combination with other diseaserelated patterns for 
syndromes with similar signs, such as PSP, MSA, and 
corticobasal ganglionic degeneration, can improve 
differential diagnosis. PDCP is also an objective measure 
of cognitive dysfunction at the systems level. The ability to 
quantify the expression of these patterns in individuals 
enables clinicians to track disease progression and 
monitor responses to treatment. Nevertheless, larger 
longitudinal studies are needed with longterm clinical 
followup and more work on prodromal, preclinical 
disease (ie, RBD). 

In practice, the application of network analysis will 
depend on extrascientific considerations, such as the 
availability and perceived cost:benefit ratio of functional 
imaging procedures. Neurologists have sometimes been 
reluctant to integrate PET into clinical decision making, 
not wanting to expose patients to radiation. Technical 
advances in PET instrumentation—eg, the commercial 
availability of highsensitivity threedimensional PET 
cameras that minimise radiation exposure, less invasive 
scanning protocols, and shorter imaging acquisition—
have largely obviated these concerns, and this increasingly 
standardised procedure is beginning to be more widely 
available in Asia, Europe, and North America. Functional 
network imaging with the use of PET has thus become a 
realistic option for trials of new therapies for Parkinson’s 
disease and related disorders—and possibly, in the future, 
for differential diagnosis and customised patient 
management. Network imaging has already been used to 
monitor treatment response in some early phase clinical 
trials.36 Nevertheless, before this approach is broadly 

approved by regulatory bodies, more masked diagnostic 
studies and cost comparisons are needed.

At the time of writing this Review, only the PETderived 
PDRP and PDCP are suitable for use in the clinic and as 
secondary outcome measures in clinical trials, but MR
based counterparts of these networks are likely to become 
applicable in the next 5–10 years. For this to happen, 
more work is needed to optimise acquisition parameters 
for the identification of diseaserelated patterns, in
cluding those for atypical parkinsonian syndromes and 
other neurodegenerative disorders. 

Several large studies are underway to assess the 
accuracy of automated differential diagnosis and to 
validate diseaserelated network biomarkers in 
independent patient cohorts. Studies are also being done 
to examine the influence of genetic risk factors such as 
GBA or LRKK2 on network progression rate. Combining 
network quantification with genotyping might prove 
useful in the study of new diseasemodifying therapies.

Figure 5: Parkinson’s disease-related pattern identified with rs-fMRI
(A) fPDRP is characterised by increased activity in the basal ganglia, thalamus, cerebellum, pons, anterior cingulate 
cortex, and supplementary motor area (derived from 20 healthy controls and 20 patients with Parkinson’s 
disease).33 Activity increases (red) overlaid on T1-weighted MRI template. Z values thresholded at plus or minus 0·5. 
(B) Data are mean (SE) expression values (subject scores), which were computed for the rs-fMRI-based and 
PET-based network topographies in individuals scanned with both imaging techniques. Subject scores for both 
patterns were elevated in patients with Parkinson’s disease relative to healthy controls (p<0·001). Error bars 
represent SE of the means. (C) Data are Z scored with respect to healthy control values; means (SE) are presented to 
the right of individual data. fPDRP expression increased in patients with Parkinson’s disease relative to healthy 
controls in the discovery sample (p<0·001) and in the validation sample (p=0·008). (D) fPDCP is characterised by a 
negative correlation between pattern expression and performance on the California Verbal Learning Test (derived 
from 19 patients with Parkinson’s disease). Negative correlations (blue) overlaid on T1-weighted MRI template. 
Z values thresholded at plus or minus 0·5. Adapted from Vo et al33 by permission of John Wiley and Sons. 
fPDCP=rs-fMRI-based PDCP. fPDRP=rs-fMRI-based PDRP. PDCP=Parkinson’s disease-related cognitive pattern. 
PDRP=Parkinson’s disease-related pattern. rs-fMRI=resting-state functional MRI. 
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Network biomarkers are likely to play an important 
part in the precision medicine of the future. By providing 
quantitative measurements in individual subjects, 
network imaging provides the basis for a more 
comprehensive, customised approach to the clinical 
management of neurodegenerative disorders. As drugs 
or other therapies are developed to slow or alter the 
disease course, the need to diagnose patients earlier and 
track their responses will become more pressing. 
Functional network biomarkers are well suited to meet 
this need.
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Appendix Table 1. Multivariate imaging models in neurodegenerative and 
neurodevelopmental disorders that can be applied to individual subjects to confirm 
diagnosis or measure disease progression   
 

Disease entity  Pattern and purpose Imaging 
modality 

References 

Functional multivariate models: diagnostic 

Alzheimer’s disease ADRP (AD-related pattern) FDG PET  1-3 

Frontotemporal lobar 
degeneration (FTLD) 

Metabolic connectivity pattern FDG PET 4 

Obsessive-compulsive 
disorder 

OCDRP (OCD-related pattern) FDG PET 5 

Tourette syndrome TSRP (TS-related pattern) FDG PET 5 

Functional multivariate models: pre-clinical/sub-clinical 

Huntington’s disease 
(preclinical) 

HDPP (HD progression pattern); progression in 
preclinical carriers 

FDG PET 6 

REM sleep behavior 
disorder 

RBDRP (RBD-related pattern) FDG PET 7, 8 

Torsion dystonia  TDRP (non-manifesting DYT1 carriers) FDG PET 5 

Structural multivariate models 

Alzheimer’s disease  SPARE-AD (early detection; Spatial pattern of 
abnormality for recognition of early Alzheimer’s 
disease) 

Structural MRI 9-11 

Alzheimer’s disease  ORCHID (progression; Ordinal regression 
characteristic index of dementia) 

Structural MRI 12 

Alzheimer’s disease, 
FTLD  

Dementia pattern (differential diagnosis, prediction) Structural MRI 13 

Alzheimer’ disease sMRI-BAS (amyloid beta; Structural MRI-based brain 
amyloidosis score) 

Structural MRI 14 

Huntington’s disease  HD volume loss pattern (atrophy) Structural MRI 6 
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Appendix Figures 

 

Appendix Figure 1. Graph theory provides insight into PD pathogenesis. Graph theoretic 

visualization of the most important nodes of PDRP in a PD cohort (n=33, mild to moderate 

motor symptoms, scanned in the “off” state).15 This display shows two distinct nodal clusters: a 

prominent basal ganglia-thalamocortical subnetwork with a distinct core-periphery structure 

(left), and a smaller discrete subnetwork involving primarily ponto-cerebellar and limbic 

interconnections (right). Both clusters centered around cores defined by high-magnitude, 

mutually reinforcing node-to-node interactions. Interestingly, the core nodes in this display 

(those with high centrality or greatest importance within the network and thus positioned close to 

the center) correspond almost exclusively to metabolically active (red) PDRP regions, whereas 

those with lower centrality tend to be underactive (blue) regions. The nodes are connected by 

unidirectional edges (i.e., a one-way relationship between nodes, indicated by arrows). The 

radius of each node is proportioned to its influence within the network; the corresponding PDRP 

region weights are color-coded such that metabolically active regions (PDRP weights ≥1.0) are 
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red while relatively underactive regions (PDRP weights ≤-1.0) are blue.] [Adapted from Ko JH, 

Spetsieris PG, Eidelberg D, Network Structure and Function in Parkinson’s Disease. Cereb 

Cortex. 2017; Oct 27: 1-15, by permission of Oxford University Press.] 

 

 

Appendix Figure 2. Metabolic network pattern can assist in differential diagnosis of 

parkinsonism in clinical practice. 1. FDG PET scan: Patients with parkinsonism and uncertain 

clinical diagnosis can undergo [18F]-FDG PET imaging to quantify specific metabolic patterns in 

the brain. 2. Image processing: Raw scans are spatially normalized to map voxels (volumetric 

pixels, the smallest spatial unit within an image) to a common coordinate space. 3. Network 

expression: Multivariate analysis enables the user to quantify the expression (activity) of a 

previously validated disease pattern in an individual patient.16 Multiple independent studies (see 

text) have established disease-related patterns for Parkinson’s disease and for three “look-alike” 

syndromes—parasupranuclear palsy (PSP), multiple system atrophy (MSA), and corticobasal 

degeneration (CBD). 4. Compute individual subject score for each pattern: The subject score 



Appendix  
Schindlbeck and Eidelberg 4 

4 
 

quantifies the expression of a covariance pattern in a given individual. This measure of pattern 

expression is computed as the projection of the pattern onto the individual’s scan data.  

5. Calculate disease probability: Subject scores for the PD pattern and for the MSA-, PSP-, and 

CBD-related patterns computed for the unknown individual are entered into a logistic regression 

algorithm to determine the relative likelihoods of each condition.  

 

 

Appendix Figure 3. Metabolic network mediating sham effect in PD patients. Network 

analysis of metabolic images obtained in eight Parkinson’s disease (PD) patients scanned at 
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baseline and again, under the blind, six months after sham surgery.17 (A) The resulting sham 

surgery-related pattern (SSRP) is characterized by increased metabolic activity in the anterior 

cingulate cortex, subgenual cingulate gyrus, inferior temporal cortex, hippocampus, amygdala, 

and posterior cerebellar vermis. The pattern is displayed as a bootstrap reliability map 

thresholded at Z=|1.64|, p<0.05 (one-tailed); 1,000 iterations and overlaid on T1-weighted MR 

template image. (B) Baseline SSRP expression in the sham surgery subjects (n=23) correlated 

with motor outcome under the blind at 6 months (r=0.459, p=0.028; Pearson’s correlation). 

Closed circles represent sham responders (SHAMR) and open circles sham nonresponders 

(SHAMNR). (C) Monte Carlo simulations estimate the sample size needed to detect a group 

difference in motor outcome based upon the data obtained under the blind in a sham surgery 

controlled clinical trial of subthalamic AAV-GAD gene therapy for advanced PD.18 The results 

of 10,000 random trials are depicted for simulations of varying sample sizes for the two groups. 

The simulations indicate that at least 192 randomized subjects would be needed to detect a 

significant group difference (p=0.05; two-tailed Student’s t-test) in 95% of the trials—but the 

number fell to 84 by a priori exclusion of subjects with baseline SSRP expression below the pre-

specified criterion. For this analysis, we chose the median baseline SSRP expression in SHAMR 

(-0.75; dashed lines in (B)). Participants with baseline SSRP values below this criterion 

exhibited more pronounced sham responses. Therefore, excluding all such “sham-susceptible” 

individuals before randomization lowered the required number of sham surgeries by >50%. 

[Adapted and republished with permission of Journal of Clinical Investigation, from Ko JH, 

Feigin A, Mattis PJ, et al. Network modulation following sham surgery in Parkinson’s disease. J 

Clin Invest. 2014; 124: 3656-66; permission conveyed through Copyright Clearance Center, Inc.] 
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